

Compact Stars with Exotic States of Matter

A basic (but hopefully interesting) introduction to matter under extreme conditions

Second Lecture

Hampton University Graduate Studies
Thomas Jefferson National Accelerator Facility
2004 June 3
Mark Paris (JLab)

Outline

- Lect 2 The layers of the "onion" Exotic states of matter
- EoS of nuclear matter
 - realistic potentials
 - solving the Schrodinger equation variationally
 - cold catalyzed nucleon matter
- Exotic states of matter
 - unpaired quark matter
 - CFL
 - other varieties
- Building a "realistic" star
 - equations of state
 - phase transitions in nuclear and quark matter
 - maximum mass limits

Nuclear matter

- Dense nucleon matter
 - 0.1< ρ <5 to 10 ρ_0 ; ρ_0 =0.16 fm⁻³
 - proton fraction, 0.01< x_p <0.15; $x_p = \rho_p/\rho$; $\rho = \rho_n + \rho_p$
 - pure neutron matter (PNM) $x_p = 0$
 - symmetric nuclear matter (SNM) has equal numbers of protons and neutrons, $x_p = 0.5$
 - use many-body techniques to solve PNM, SNM and then interpolate to general \mathbf{x}_{p}
- "Realistic" models of the nucleon-nucleon (NN) potential
 - at large distances NN interaction dominated by π -exchange
 - meson exchange-motivated at short distances
 - multi-meson exchanges at large distance
 - three-body two pion exchange interaction (Fujita-Miyazawa)
- Parametrize of the potential
 - fits to NN elastic scattering phase shifts up to » 350 MeV
 - fit to deuteron binding energy
 - three-body potential needed fit to ³H and equilibrium density of nuclear matter

Nuclear forces

- without nuclear forces M_{max} » 0.7 M₋
- strong repulsion at small r, intermediate » 1-1.5 fm attraction

FIG. 6. Central, isospin, spin, and spin-isospin components of the potential. The central potential has a peak value of 2031 MeV at r=0.

FIG. 7. Tensor and tensor-isospin parts of the potential. Also shown are the OPE contribution to the tensor-isospin potential, and for comparison an OPE potential with a monopole form factor containing a 900 MeV cutoff mass.

Realistic potentials

- NN interaction fits to scattering data with χ²/N»1
- Egs.
 - Reid93 local, non-relativistic
 - Paris local, non-relativistic
 - Argonne v₁₈ (Av18) local, non-relativistic, charge dependence
 - Bonn relativistic meson exchange w/short range cut-offs, nonlocal, charge dependence

Charge symmetry: n\$p Charge dependence: nn ≠ pp

$$|T = 0, T_z = 0\rangle = \frac{1}{\sqrt{2}}(pn - np)$$

$$|T = 1, T_z = -1\rangle = nn$$

$$|T = 1, T_z = 0\rangle = \frac{1}{\sqrt{2}}(pn + np)$$

$$|T = 1, T_z = +1\rangle = pp$$

Argonne V₁₄ Hamiltonian + TNI

kinetic energy operator

$$T = \sum_{i} -\frac{\hbar^{2}}{4} \left[\left(\frac{1}{m_{p}} + \frac{1}{m_{n}} \right) + \left(\frac{1}{m_{p}} - \frac{1}{m_{n}} \right) \tau_{z,i} \right] \nabla_{i}^{2}$$

potential operator

$$v_{ij} = \sum_{p=1}^{18} v^p(r_{ij}) \mathcal{O}_{ij}^p$$

$$\mathcal{O}_{ij}^{p=1,14} = [1, \vec{\sigma}_i \cdot \vec{\sigma}_j, S_{ij}, (\vec{L} \cdot \vec{S})_{ij}, L_{ij}^2, L_{ij}^2 \vec{\sigma}_i \cdot \vec{\sigma}_j, (\vec{L} \cdot \vec{S})_{ij}^2] \otimes [1, \vec{\tau}_i \cdot \vec{\tau}_j]$$

Many-body Hamiltonian

$$H = T + \sum_{ij} v_{ij} + \sum_{ijk} V_{ijk} + \dots$$

• Fujita-Miyazawa

$$V_{ijk}^{2\pi} = \left[\begin{array}{c} \pi \\ \sigma(3) \end{array}\right]_{3}^{\pi} \left[\begin{array}{c} \pi \\ \vec{Q'} \end{array}\right]_{2}^{\sigma(2)}$$

Variational calculation of the energy

- obtain upper bound on ground state energy and wave function
- pair interactions induce correlations with same operator structure

$$|\Psi(\vec{R})\rangle = \mathcal{S} \prod_{i < j} \hat{F}_{ij} |\Phi\rangle$$

$$\hat{F}_{ij} = \sum_{p} f^{p}(r_{ij}) \mathcal{O}_{ij}^{p}$$

- correlation operators, F_{ij}, satisfy Euler-Lagrange equations which minimize the two-body contribution to the energy
- variational parameters, λ^p , are chosen to satisfy boundary conditions:

$$p = 1, \mathcal{O}^{p=1} = 1, f^p(r > d^p) = \delta_{p,1}$$

• cluster expansion of energy to two-body level: $\langle \Psi | H | \Psi \rangle$

$$f^q(r_{ij})\mathcal{O}^q_{ij}v^p_{ij}\mathcal{O}^p_{ij}f^{q'}(r_{ij})\mathcal{O}^{q'}_{ij}$$

PNM & SNM energies

- energy per nucleon MeV/fm³
- phase transition to pion condensed phase
 - PNM » 0.2 fm⁻³
 - SNM » 0.32 fm⁻³
- condensed phase is a high density phase
- note kink in P/SNM
- occurs when inmedium effective pion mass!0 [Migdal, RMP, 50, p107]
- important for cooling and neutron star evolution

Akaml and Pandharipande, PRC 56, p 2261 Akmal, Pandharipande, & Ravenhall, PRC 58, p 1804

Neutron star structure

- matter at T=0 in the ground state
- The Crust
 - surface, zero pressure ⁵⁶Fe
 - e⁻+p!n+v as pressure increases
 - increase depth from surface) more neutron rich nuclei
 - cross neutron-drip line n»2£10⁻⁴
 - as p", 30<Z<40, A" until n»0.06fm⁻³
 - pasta phases when V_{nuclei} ¼ $V_{neutron\ gas}$
 - at n»0.1 fm⁻³ no nuclei: cold catalyzed nucleon matter
 - mass fraction in crust . 2%
- Inner crust/Outer core
 - neutron liquid with small fraction of protons
 - charge neutral $\rho_p = \rho_e + \rho_\mu$
 - beta equilibrium $\mu_n = \mu_p + \mu_{e'}$, $\mu_e = \mu_{\mu}$
 - transition from normal phase of neutrons and protons to high density pion condensed phase over ¼ few 10's m

Cold catalyzed nucleon matter

Solve for equilibrium conditions

$$p = \sum_{i} \mu_{i} n_{i} - \epsilon, \quad \mu_{i} = \frac{\partial \epsilon}{\partial \rho_{i}}, \quad i = p, n, e, \mu$$

$$p = p_{N} + p_{e} + p_{\mu}$$

$$\epsilon = \epsilon_{N} + \epsilon_{e} + \epsilon_{\mu}$$

Effective Hamiltonian for x_p≠0,0.5

$$\epsilon_{N}(\rho, x_{p}) = \left(\frac{\hbar^{2}}{2m} + f(\rho, x_{p})\right) \tau_{p}$$
effective mass terms
$$+ \left(\frac{\hbar^{2}}{2m} + f(\rho, 1 - x_{p})\right) \tau_{n}$$

$$+ g(\rho, x_{p} = 0.5)(1 - (1 - 2x_{p})^{2})$$

$$+ g(\rho, x_{p} = 0)(1 - 2x_{p})^{2}$$
 symmetry energy

Cold catalyzed nucleon matter (II)

• conditions of beta equilibrium) $x_p(\rho)$

FIG. 7. On a plot of proton fraction x_p vs baryon density, for the A18+ δv + UIX* model, the boundary between the LDP and HDP, obtained in the manner described in the text. The dashed curve is the proton fraction of beta-stable matter, and the dotted lines mark the boundary of the mixed phase region.

Solve T-O-V equation

- obtain M(R)
- max mass » 2.2 M₋

- effect of TNI
- •effect of rel. corrections
- •solid curves: beta stable
- dashed curves: PNM

Transition to quark matter

- Superluminality problematic for nuclear EoS's
 - non-relativistic
 - neglects other species
- Hyperonic matter: Λ , $\Sigma^{-,0,+}$, $\Delta^{-,0,+,++}$
 - more degrees of freedom) softer EoS
- Neglect interactions between nucleons and hyperons

FIG. 15. The neutron and electron chemical potentials in beta stable matter according to models $A18 + \delta v + UIX^*$ (full line) and $A18 + \delta v$ (dashed line). Threshold densities for the appearance of noninteracting hyperons are marked by horizontal line segments.

HUGS/2004

Quark matter

- matter compressed beyond 5 to 10ρ₀
- deconfining transition: quark matter
 - T=0 (distinct from RHIC physics where T¼175 MeV)
 - QCD is asymptotically free $\alpha_s(Q^2)$ »1/log(Q²/ Λ^2)
 - weakly interacting quarks
- nature of phase transition depends on interactions
- experimental observations
 - RHIC, SPS, AGS, SIS
- lattice calculations
 - at high T, low μ_B
 - difficult at low T, large μ_B due to `sign problem' in Monte Carlo simulation of fermions

C. Gagliardi, QNP2004

- Our perspective
 - quark matter will be relevant at some ρ
 - what observational consequences for phenomenological models?

Unpaired quark matter

- free energy (– pressure)
 - ignore charm, bottom, top quarks

$$\Omega_{UQM}(\mu,\mu_e) \ = \ \frac{3}{\pi^2} \int_0^{\nu_u} dp \, p^2(p-\mu_u) + \frac{3}{\pi^2} \int_0^{\nu_d} dp \, p^2(p-\mu_d) + \frac{3}{\pi^2} \int_0^{\nu_s} dp \, p^2(\sqrt{p^2+m_s^2}-\mu_s)$$
 massless massive strange quarks
$$\mu \ = \ \mu_n/3 \qquad \qquad \text{up+down quarks}$$
 strange quarks
$$\nu_u^2 \ = \ \mu_u^2 - m_u^2, \quad \mu_u = \mu - \frac{2}{3}\mu_e$$

$$\nu_d^2 \ = \ \mu_d^2 - m_d^2, \quad \mu_d = \mu + \frac{1}{3}\mu_e$$

$$\nu_s^2 \ = \ \mu_s^2 - m_s^2, \quad \mu_s = \mu - \frac{1}{3}\mu_e$$

bag pressure -- exclusion of non-perturbative QCD costs energy

$$\Omega_{UQM}(\mu, \mu_e) \rightarrow \Omega_{UQM}(\mu, \mu_e) + B$$
 $B \approx 200 \,\mathrm{MeV/fm}^3$

ground state – three independent Fermi spheres

Fermi surface and BCS pairing

- absence of interactions Fermi surface is stable
 - $F=E-\mu N$, $E_F=\mu$) $\Delta F=0$, $\Delta N=1$
- introduce arbitrarily weak attractive interaction in any channel
 - no free energy cost to make pairs
 - modes near Fermi surface will pair
 - pairs are bosons) condensate
 - ground state = superposition of states with all numbers of pairs
 - Fermion number symmetry is broken

e.g.

$$3 \sim q = \begin{pmatrix} u \\ d \\ s \end{pmatrix} \qquad u = u_{\alpha,c},$$

$$\alpha = 1, \dots, 4$$

$$c = R, G, B$$

perturbative gluon interaction

$$\bar{\mathbf{3}} \oplus \mathbf{6} = \mathbf{3} \otimes \mathbf{3}$$

$$\bar{R} = \frac{1}{\sqrt{2}}(BG - GB) \qquad RR, \dots$$

$$\bar{G} = \frac{1}{\sqrt{2}}(BR - RB)$$

$$\bar{B} = \frac{1}{\sqrt{2}}(RG - GR)$$

$$T \cdot T = \sum_{c} T^{c} T^{c}$$
 $\langle \overline{3} | T \cdot T | \overline{3} \rangle = -\frac{2}{3} \rightarrow \text{color superconductivity}$
 $T^{c} = \frac{\lambda^{c}}{2}$ $\langle 6 | T \cdot T | 6 \rangle = +\frac{1}{3}$

The gap equation

$$\Sigma(k) = -\frac{1}{(2\pi)^4} \int \! d^4q \, M^{-1}(q) D(k-q),$$

Ansatz:
$$M(q) = M_{\rm free} + \Sigma = \begin{pmatrix} \not q + \mu \gamma_0 & \gamma_0 \Delta \gamma_0 \\ \Delta & (\not q - \mu \gamma_0)^T \end{pmatrix} \qquad \overset{\Sigma}{\underset{\rm Self-energy}{\longleftarrow}} = \overset{-}{\underset{\rm Self-energy}{\longleftarrow}} + \overset{-}{\underset{\rm Self-energy}{\longleftarrow}} + \overset{-}{\underset{\rm Self-energy}{\longleftarrow}} = \overset{-}{\underset{\rm Self-energy}{\longleftarrow}} + \overset{-}{\underset{\rm Self-energy}{\longleftarrow}} +$$

$$\Psi = \left(\frac{q}{\bar{q}^T}\right), \quad \langle qC\gamma_5q\rangle$$

$$1 = K\int_0^\Lambda k^2dk \, \frac{1}{\sqrt{(k-\mu)^2+\Delta^2}}$$

$$\Delta \sim \Lambda \exp\Bigl(\frac{\mathrm{const}}{K\mu^2}\Bigr) \, \text{non-analytic behavior} \, \text{in the coupling, K appears at no finite order in perturbation theory}$$

Interactions:

- •pQCD at μ»106 MeV
- instanton vertex-four fermion int.
- Nambu—Jona-Lisinio-QCD w/out gluonpropagator

 $\Delta \sim 10$ to 100 MeV

Color-Flavor-Locked (CFL) phase

Alford, Rajagopal, Wilczek, hep-ph/9804403

choose a particular pairing arrangement for 3 massless quarks

$$\begin{array}{lll} \Delta_{ij}^{ab} &=& \langle q_i^a q_j^b \rangle \\ & \propto & C \gamma_5 \left[\epsilon^{abX} \epsilon_{ijX} + \kappa (\delta_i^a \delta_j^b + \delta_j^a \delta_i^b) \right] \\ & & \text{color and flavor} \\ & & \text{locked in} \\ & & & (\overline{3}_A, \overline{3}_A) \end{array}$$

breaks symmetry of chiral QCD Lagrangian

$$SU(3)_{color} \otimes SU(3)_L \otimes SU(3)_R \otimes U(1)_B$$

$$\downarrow$$

$$SU(3)_{color+L+R} \otimes Z_2$$

Symmetry breaking in CFL phase

- color is completely broken) all 8 gluons become massive
- all quark modes are gapped
 - nine quasi-quarks 8©1 corresponding to unbroken SU(3)_{color+L+R}
 - two gaps singlet > octet
- electromagnetism U(1)₀ mixes with flavor symmetry

) $\tilde{Q} = Q + \frac{1}{\sqrt{3}}T_8$ is conserved

- Broken global symmetries
 - chiral symmetry
 - pseudoscalar octet of chiral Goldstone bosons, "K,π,η"
 - baryon number
 - hudsudsi ≠ 0) CFL superfluid

CFL properties

- consider $m_u = m_d = 0$, $m_s \ge \mu$
- Fermi momenta of u,d,s are the same
 - minimizes free energy for small m_s
 - maximizes overlap for pairing
- ground state is charge neutral
 - equal fermi momenta) equal numbers of u,d,s
 - no leptons required
- common Fermi momentum

$$3\mu = 2\nu + \sqrt{\nu^2 + m_s^2}$$

$$=> \nu = 2\mu - \sqrt{\mu^2 + \frac{m_s^2}{3}}$$

CFL EoS

free energy

$$\Omega_{CFL}(\mu, \mu_e) = \Omega_{CFL}^{quarks}(\mu) + \Omega_{CFL}^{GB}(\mu, \mu_e) + \Omega_{CFL}^{leptons}(\mu_e)$$

Quarks – kinetic + gap + bag constant

$$\begin{split} \Omega_{CFL}^{quarks}(\mu) &= \frac{6}{\pi^2} \int_0^\nu dp \, p^2(p-\mu) & \text{up+down massless} \\ &+ \frac{3}{\pi^2} \int_0^\nu dp \, p^2(\sqrt{p^2+m_s^2}-\mu) & \text{strange} \\ &- \frac{3\Delta^2\mu^2}{\pi^2} + B & \text{gap + bag constant} \end{split}$$

Goldstone bosons – condensate non-zero from broken symm.

$$\Omega_{CFL}^{GB}(\mu, \mu_e) = -\frac{1}{2} f_{\pi}^2(\mu) \mu_e^2 \left(1 - \frac{m_{\pi}^2}{\mu_e^2} \right)^2$$

$$f_{\pi}^2(\mu) = c\mu^2$$

$$m_{\pi}^2 = \frac{3\Delta^2}{\pi^2 f_{\pi}^2} m_s(m_u + m_d)$$

CFL - nuclear interface

- single sharp interface point B
 - beta stable charge neutral nuclear matter interface with chargeless CFL
 - charged boundary layers

$$\Omega_{nuclear}(\mu(B), \mu_e) = \Omega_{CFL}(\mu(B))$$

- mixed phase region
 - neither NM phase nor CFL phase is charge-neutral
 - bulk is charge-neutral
 - Coulomb and surface energies could make the mixed phase unfavorable

$$\Omega_{nuclear}(\mu, \mu_e) = \Omega_{CFL+Kaons}(\mu, \mu_e)$$

 Assume mixed phase region obtains: make a star

Mixed phase properties

EoS – Mixed phase

perturbative corr.

$$\Omega_{CFL}^{quarks} \rightarrow a_{FPS} \Omega_{CFL}^{quarks}$$
 $a_{FPS} = 1 - 2 \frac{\alpha_s}{\pi}$

Masquerading hybrid stars

- perturb. corr. stiffen EoS
- M(R) for pure NM closely follows hybrid curve
- Require extremely precise Radius determination
- transport properties more sensitive to exotic phases
 - mean free paths
 - conductivities
 - viscosities
 - opacities

Things I didn't cover

- 2SC
 - only light quarks pair
- gapless superconductivity
- color flavor unlocking and crystalline color superconductivity
 - strange quark mass effect
 - "LOFF" phase
 - Cooper pairs have non-zero total momentum
 - spatially periodically varying gap
- gamma ray bursters
- glitches
- Many more...